1	$3^4 = \frac{3^x}{9^{3x}} \text{ or } 81 = \frac{3^x}{(3^2)^{3x}}$	$9^2 = \frac{3^x}{9^{3x}} \text{ or } 81 = \frac{(9^{0.5})^x}{9^{3x}}$			M1	replacing 81 with 3^4 or 9^{3x} with $(3^2)^{3x}$ (or 3^{6x}) or replacing 81 with 9^2 or 3^x with $(9^{0.5})^x$ (in an equation)
	eg $4 + 6x = x$ or $4 = x - 2(3x)$ oe	eg $2 = 0.5x - 3x$ oe			M1	a correct equation using powers
			-0.8	3	A1	oe, dep on at least M1
						Total 3 marks

2	(b)	$(8^{5y} =) 2^{15y}$ or $(4^n =) 2^{2n}$ or 2^{5y+2}		4	M1	
		$2^{5y+2} = 2^{15y-2n}$ oe			M1	e.g. $2^{2n} = 2^{15y - 5y - 2}$
		5y + 2 = 15y - 2n oe			M1	Correct equation using the powers
[n = 5y - 1		A1	Dep on M2 (accept $5v - 1$)

3 (a)	$2^{\frac{1}{2}} \times 2^4$ or eg $2 \times (2^4)^2 = (2^x)^2$ or $2^9 = 2^{2x}$		2	M1	for a correct expression in powers of 2 that is equivalent to $2^x \operatorname{eg} 2^{\frac{1}{2}} \times 2^4$ or for showing $\sqrt{2} = 2^{\frac{1}{2}}$ and $16 = 2^4$ or for writing the equation in powers of 2 $\operatorname{eg} 2 \times (2^4)^2 = (2^x)^2$ or $2^9 = 2^{2x}$
	Working required	9/2		Al	or 4.5 or 4½ dependent on M1
(b)	$ \frac{11^{-30}}{11^4} $ or $ -30 - 4 = n \text{ or } -30 = n + 4 \text{ oe} $		2	M1	For $(11^{-6})^5$ written as 11^{-30} in the equation or $(11^{-6})^5 = 11^{-30}$ shown in working or a correct equation with indices only (no marks for 3.914×10^{-36})
	Working required	-34		Al	dep on M1 (as we have asked for working) Total 4 marks

4	$\frac{4y^5}{3x^2}$	3	B3 Accept $\frac{4}{3}x^{-2}y^{5}$ or $\frac{4x^{-2}y^{5}}{3}$ or $1.3x^{-2}y^{5}$ oe NB: Must see 4 and 3
			and not $16^{\frac{1}{2}}$ or $9^{\frac{1}{2}}$ or $16^{-\frac{1}{2}}$ or $9^{-\frac{1}{2}}$ (allow use of 1.3[33])
			If not B3 then B2 for 2 of:
			correct fraction $(\frac{4}{3}or_{1.3})$ (allow use of 1.3[33]) or
			x term correct (x^2 on denominator or x^{-2} on numerator) or
			y term correct (y^5 on numerator or y^{-5} on denominator)
			If not B2 then B1 for 1 of: correct fraction or x term correct or y term correct or for one of applying negative power to at least 3 out of 4 of 9, x ⁴ , 16, y ¹⁰ or
			applying square root to at least 3 out of 4 of $9, x^4, 16, y^{10}$
			eg at least 3 of the 4 parts of $\frac{16y^{10}}{9x^4}$ or $\frac{16x^{-4}}{9y^{-10}}$ or $\frac{\frac{1}{9}x^{-4}}{\frac{1}{16}y^{-10}}$ or $\frac{3x^2}{4y^5}$ oe
			Total 3 marks

5	(a)	eg $(2^3)^2 \times \sqrt[3]{(2^2)^6}$ or $(2^3)^2 \times (4)^{\frac{6}{3}}$ or $4^3 \times 4^2$ or 2^6 or 2^4 seen or $2^6 \times 16$ or 64×4^2 or $8^2 \times 4^2$ or $8^2 \times 16$ or 64×4^2 or $8^2 \times 4^2$ or $8^2 \times 16$	64 × 16		3	M1 a correct first stage.
	•	$2^{6} \times (2^{12})^{\frac{1}{3}}$ or 1024 or 32^{2} or 4^{5} or $2^{6} \times 2^{4}$. 10			M1 dep on 1st M mark.
				210		A1 dependent on first M1 isw if 2 ¹⁰ seen but then 10 given as answer.
	(b)	$(n^{-\frac{4}{5}} =)\frac{1}{16}$ or 0.0625 oe $eg(n^{-\frac{1}{5}})^4 =$	(-)		4	for sight of $\frac{1}{16}$ oe, even if raised to an incorrect power. or for algebraic approach, separating out the 4, or 5 or -1 in the power
			$\left(\frac{1}{2}\right)^{-3}$			M2 for a correct expression for n (M1 for one correct algebraic stage $eg n^{-\frac{1}{5}} = \frac{1}{2}$)
				32		A1
	•					Total 7 marks
6	$(4^n =)(2^n = 1)$	22\11 22		2	M1	C (2) ⁿ 22n
		2^{2n} one gg $2^k \div 2^{2n} = 2^x$		_	1,11	for writing 4^n as $(2^2)^n$ or 2^{2n} or
	or	2 0e eg 2 ÷2 =2				for writing each term in terms of 4 ie
						$2^k = 4^{\frac{1}{2}^k}$ and $2^x = 4^{\frac{1}{2}^x}$
	$2^k = 4^{\frac{1}{2^k}}$	and $2^x = 4^{\frac{1}{2}x}$ on $2^x = 4^{\frac{1}{2}x} = 4^{\frac{1}{2}x}$				If these things are seen in working, award this mark even if followed by incorrect working – if not a choice of methods
			k – 2n		A1	allow 2^{k-2n}
						Total 2 marks
7	(a)			4 3	1	B1
8		216 or 2.16 or 10^{120} or 10^{122} or $6^3 \times 10^{40 \times 3}$			3	M1 or for digits 216
		216×10^{120} oe or or 2.16×10^n where $n \neq 122$				M1
			2.16>	10122		A1
						Total 3 marks

2

 $-\frac{5}{4}$

M1

oe allow eg $\frac{5}{-4}$

Total 2 marks

 $\frac{4}{5}x = 1$ oe

Correct answer scores full marks (unless from obvious incorrect working)

 $2^{-4x} = 2^5$ or -4x = 5 or -

10	2 ³ and		5	M1	for writing 16x and 8 as a power
	2^{4x} or $(2^4)^x$				of 2 (or all as powers of 4,8 or
					16)
	$n = x^2 + 4x + 3$ oe or			A1	for writing n in terms of x
	$x^2 + 4x + 3 - n = 0$				correct expression implies first M1
	$(n=)(x+2)^2-2^2$ oe or			M1	for a correct first step in completing the square or using
	$(x=)-2\pm\sqrt{n+1}$				the quadratic formula correctly
	$(n =)(x+2)^{2} - 2^{2} \dots \text{oe or}$ $(x =) -2 \pm \sqrt{n+1}$ $(x =) \frac{-4 \pm \sqrt{4^{2} - 4 \times 1 \times (3-n)}}{2} \text{ oe}$				ft their 3 term quadratic
	$(x=)-2+\sqrt{n+1}$ oe or			A1	for correctly rearranging to make <i>x</i> the subject (must be positive
	$(x =) -2 + \sqrt{n+1}$ oe or $(x =) \frac{-4 + \sqrt{4^2 - 4 \times 1 \times (3-n)}}{2}$ oe				square root)
	Correct answer scores full marks (unless from	$(x=)-2+\sqrt{n+1}$		A1	must be positive square root
	obvious incorrect working)	$(x=)-2+\sqrt{n+1}$ and $n > 3$			Accept $(x =)\sqrt{n+1} - 2$ oe and
					3 < n
					Accept
					$(x=)\frac{-4+\sqrt{4^2-4\times1\times(3-n)}}{2}$ oe
					and $n > 3$ or $3 < n$
					Total 5 marks
					

ALT	$4^{\frac{1}{2}^{n}}, 4^{\frac{1}{2}x^{2}}, 4^{2x}$ and $4^{\frac{3}{2}}$	$8^{\frac{1}{3}^{n}}, 8^{\frac{1}{3}^{x^{2}}}$ and $8^{\frac{4}{3}^{x}}$	$16^{\frac{1}{4}n}, 16^{\frac{1}{4}x^2}$ and $16^{\frac{3}{4}}$		5	M1	for all as powers of 4 or 8 or 16
	$n = x^2 + 4x + 3 \text{ o}$ $x^2 + 4x + 3 - n =$	= 0				A1	for writing <i>n</i> in terms of <i>x</i> correct expression implies first M1
	$(n =)(x+2)^{2} - 2$ $(x =) - 2 \pm \sqrt{n+2}$ $(x =) \frac{-4 \pm \sqrt{4^{2} - 2}}{2}$	$\frac{2^2 \dots \text{oe or}}{1}$ $\frac{4 \times 1 \times (3-n)}{2} \text{ oe}$				M1	for a correct first step in completing the square or using the quadratic formula correctly ft their 3 term quadratic
	$(x =) -2 + \sqrt{n+1}$ $(x =) \frac{-4 + \sqrt{4^2 - 4}}{2}$	$\frac{1}{4 \times 1 \times (3-n)}$ oe				A1	for correctly rearranging to make <i>x</i> the subject (must be positive square root)
	Correct answer obvious incorrec	scores full marks et working)	(unless from	$(x=)-2+\sqrt{n+1}$ and $n > 3$		A1	must be positive square root Accept $(x =)\sqrt{n+1} - 2$ oe and $3 < n$ Accept $(x =)\frac{-4 + \sqrt{4^2 - 4 \times 1 \times (3-n)}}{2}$ oe and $n > 3$ or $3 < n$
							Total 5 marks

11	m^9k^{15}	2	B2 oe for all 3 correct eg $125^{-1}m^9k^{15}$ or
	125		$\frac{1}{125}m^9k^{15}$
			125
			Accept $a = 9$, $b = 15$ and $c = 125$
			B1 for a quotient in the form of $\frac{m^p k^q}{r}$ or
			a product in the form $r^{-1}m^pk^q$ where 2
			from p or q or r are correct
			$ \operatorname{eg} \frac{m^9 k^{15}}{25} \text{ or } 125 m^9 k^{15} $
			Allow $m^9 k^{15}$ or $\frac{m^9}{125}$ or $125^{-1} m^9$ or $\frac{k^{15}}{125}$ or
			$125^{-1}k^{15}$ so long as not added to any other
			terms
			Accept two from $a = 9$ or $b = 15$ or
			c = 125
			Accept $y125^{-1}m^9k^{15}$ or $\frac{ym^9k^{15}}{125}$ where y is
			constant
			Total 2 marks

12	(a)	$\sqrt{2} = 2^{\frac{1}{2}} \text{ or } 8^3 = 2^9 \text{ or } 16^{\frac{3}{2}} = 2^6$		3	M1	for one of $\sqrt{2} = 2^{\frac{1}{2}}$ or $8^3 = 2^9$ or $16^{\frac{3}{2}} = 2^6$
					M1	for all of
						$\sqrt{2} = 2^{\frac{1}{2}}$ and $8^3 = 2^9$ and $16^{\frac{3}{2}} = 2^6$
						OR $2^{\frac{1}{2}} \div 2^3$
		Working required	-2.5		A1	oe, dep on M1
	(b)	$0.04 \times 4.5 \times 10^{157}$ oe		3	M1	
		$4 \times 10^{-2} \times 4.5 \times 10^{157} $ (= 18×10^{155}) or 0.18×10^{157} oe			M1	
		Correct answer scores full marks (unless from	1.8×10^{156}	1	A1	
		obvious incorrect working)				SCB1 for $18 \times 10^{156} = 1.8 \times 10^{157}$
						or $18 \times 10^{157} = 1.8 \times 10^{158}$
						Total 6 marks

13	(a)		8a9	2	B2	for a fully correct answer. if not B2,
						then B1 for 8 or a^9 as part of a product in answer, or final
						line of working
	(b)		$1000x^{3}$	2	B2	for a fully correct answer.
						(B1 for final answer or final line of working with: 1000 or
						x^3 as part of a product or $(10x)^3$ or $\frac{1}{1000x^3}$)
	(c)	$eg 30 \times \frac{1-2y}{3} = 30 \times \frac{4}{5} - 30 \times \frac{2y-1}{2}$ oe or		3	M1	For clear intention to multiply all terms by 30 (or $3 \times 5 \times 2$)
		3 3 2				or a multiple of 30 oe in an equation
		$eg \frac{10(1-2y)}{30} = \frac{6\times4}{30} - \frac{15(2y-1)}{30}$ oe or				or to express all terms over 30 (or $3 \times 5 \times 2$) or a multiple
		30 30 30				of 30 oe in an equation
		$\frac{1-2y}{3} = \frac{2\times4}{10} - \frac{5(2y-1)}{10}$ oe or				Or writing DHC even 10 on a multiple of 10 on tanger
		$eg {3} = {10} - {10} $ $ee of$				writing RHS over 10 or a multiple of 10 or 'cross
						multiplying' in an equation or
		eg $10(1-2y) = 3 \times 2 \times 4 - 3 \times 5(2y-1)$ oe or				
		10(1-2v)+15(2v-1) 4				bringing terms in y on LHS side and leaving $\frac{4}{5}$ on RHS and
		eg $\frac{10(1-2y)+15(2y-1)}{30} = \frac{4}{5}$ or				writing terms on LHS over 6 or a multiple of 6 in an
		30				equation
		$\frac{2(1-2y)}{6} + \frac{3(2y-1)}{6} = \frac{4}{5}$ oe (as above)				·
		$\phantom{00000000000000000000000000000000000$				[if expanded numerators, allow one error]
	•	eg $10 - 20y = 24 - 30y + 15$ oe eg $10y = 29$ or			M1	(ft if only one error)
		50 - 100y + 150y - 75 = 120 oe or				Expanding brackets and multiplying by denominator with
		10 - 20y + 30y - 15 = 24 oe				no more than one error in total
		2 - 4y + 6y - 3 = 4.8				
		Working required	2.9		A1	oe eg $\frac{29}{10}$ or $2\frac{9}{10}$ dep on M2
						Total 7 marks